From Wikipedia
Uses
Inconel is often encountered in extreme environments. It is common in gas turbine blades, seals, and combustors, as well as turbocharger rotors and seals, electric submersible well pump motor shafts, high temperature fasteners, chemical processing and pressure vessels, heat exchanger tubing, steam generators and core components in nuclear pressurized water reactors, natural gas processing with contaminants such as H2S and CO2, firearm sound suppressor blast baffles, and Formula One, NASCAR, NHRA, and APR, LLC exhaust systems.It is also used in the turbo system of the 3rd generation Mazda RX7, and the exhaust systems of high powered rotary engined Norton motorcycles where exhaust temperatures reach more than 1,000 degrees C. Inconel is increasingly used in the boilers of waste incinerators. The Joint European Torus and DIII-D (fusion reactor) tokamaks vacuum vessels are made of Inconel. Inconel 718 is commonly used for cryogenic storage tanks, downhole shafts and wellhead parts.
Several applications of inconel in aerospace include:
- The Space Shuttle used four Inconel studs to secure the solid rocket boosters to the launch platform, eight total studs supported the entire weight of the ready to fly Shuttle system. Eight frangible nuts are encased on the outside of the solid rocket boosters, at launch explosives separated the nuts releasing the Shuttle from its launch platform.
- North American Aviation constructed the skin of the North American X-15 Rocket-powered aircraft out of an Inconel alloy known as "Inconel X".
- Rocketdyne used Inconel X-750 for the thrust chamber of the F-1 rocket engine used in the first stage of the Saturn V booster.
- SpaceX uses inconel in the engine manifold of their Merlin rocket engine which powers the Falcon 9 launch vehicle.
- In a first for 3D printing, the SpaceX SuperDraco rocket engine that provides launch escape system and propulsive-landing thrust for the Dragon V2 crew-carrying space capsule is fully printed. In particular, the engine combustion chamber is printed of Inconel using a process of direct metal laser sintering, and operates at very high temperature and a chamber pressure of 6,900 kilopascals (1,000 psi).
Inconel is also used in the automotive industry:
- Tesla Motors is now using Inconel, in place of steel, to upgrade the main battery pack contactor in its Model S so that it remains springy under the heat of heavy current. Tesla claims that this allows upgraded vehicles to safely increase the maximum pack output from 1300 to 1500 amps, allowing for an increase in power output (acceleration) Tesla refers to this as "Ludicrous Mode".
- Ford Motor Company is using Inconel to make the turbine wheel in the turbocharger of its EcoBlue diesel engines introduced in 2016.
- The exhaust valves on NHRA Top Fuel and Funny Car drag racing engines are made of Inconel.Inconel is also used in the manufacture of exhaust valves in high performance aftermarket turbo and Supercharged Mazda Miata engine builds (see Flyin' Miata).
- BMW has since used Inconel in the exhaust manifold of its high performance luxury car, the BMW M5 E34 with the iconic S38 engine, withstanding higher temperatures and reducing backpressure.
- Jaguar Cars has fit, in their Jaguar F-Type SVR high performance sports car, a new lightweight Inconel titanium exhaust system as standard which withstands higher peak temperatures, reduces backpressure and eliminates 35 lbs (16kg) of mass from the vehicle.
Rolled Inconel was frequently used as the recording medium by engraving in black box recorders on aircraft.
Alternatives to the use of Inconel in chemical applications such as scrubbers, columns, reactors, and pipes are Hastelloy, perfluoroalkoxy (PFA) lined carbon steel or fiber reinforced plastic.
Inconel alloys
Alloys of inconel include:
- Inconel 600: Solid solution strengthened
- Inconel 625: Acid resistant, good weldability. The LCF version is typically used in bellows.
- Inconel 690: Low cobalt content for nuclear applications, and low resistivity
- Inconel 713C: Precipitation hardenable nickel-chromium base cast alloy
- Inconel 718: Gamma double prime strengthened with good weldability
- Inconel 751: Increased aluminium content for improved rupture strength in the 1600 °F range
- Inconel 792: Increased aluminium content for improved high temperature corrosion properties, used especially in gas turbines
- Inconel 939: Gamma prime strengthened to increase weldability
In age hardening or precipitation strengthening varieties, alloying additions of aluminum and titanium combine with nickel to form the intermetallic compound Ni3(Ti,Al) or gamma prime (γ’). Gamma prime forms small cubic crystals that inhibit slip and creep effectively at elevated temperatures.